A Complementary Method for Preventing Hidden Neurons’ Saturation in Feed Forward Neural Networks Training

نویسندگان

  • P. Moallem
  • S. A. Ayoughi
چکیده

In feed forward neural networks, hidden layer neurons’ saturation conditions, which are the cause of flat spots on the error surface, is one of the main disadvantages of any conventional gradient descent learning algorithm. In this paper, we propose a novel complementary scheme for the learning based on a suitable combination of anti saturated hidden neurons learning process and accelerating methods like the momentum term and the parallel tangent technique. In our proposed method, a normalized saturation criterion (NSC) of hidden neurons, which is introduced in this paper, is monitored during learning process. When the NSC is higher than a specified threshold, it means that the algorithm moves towards a flat spot as the hidden neurons fall into saturation condition. In this case, in order to suppress the saturation of hidden neurons, a conventional gradient descent learning method can be accompanied by the proposed complementary gradient descent saturation prevention scheme. When the NSC assumes small values, no saturation detected and the network operates in its normal condition. Therefore, application of a saturation prevention scheme is not recommended. We have evaluated the proposed complementary method in accompaniment to the gradient descent plus momentum and parallel tangent, two conventional improvements on learning methods. We have recorded remarkable improvements in convergence success as well as generalization in some well known benchmarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks

The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...

متن کامل

بهینه سازی فرآیند با چند سطح پاسخ به وسیله شبکه‌های عصبی برمبنای مفهوم مطلوبیت

In this paper, a method is proposed for Multiple Response Optimization (MRO) by neural networks and uses desirability of each response for forecasting. The used neural network is a feed forward back propagation one with two hidden layers. The numbers of neurons in the hidden layers are determined using MSE criterion for training and test data. The numbers on neurons of the first layer last laye...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...

متن کامل

Evaluation of effects of operating parameters on combustible material recovery in coking coal flotation process using artificial neural networks

In this research work, the effects of flotation parameters on coking coal flotation combustible material recovery (CMR) were studied by the artificial neural networks (ANNs) method. The input parameters of the network were the pulp solid weight content, pH, collector dosage, frother dosage, conditioning time, flotation retention time, feed ash content, and rotor rotation speed. In order to sele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011